Abstract

Performing chemical functionalization on the surface of nanoparticles underlies their use in applications. Probing that a physicochemical transformation has indeed occurred on a nanoparticles' surface is rather difficult. For this reason, we propose that a macroscopic parameter, namely the surface energy γ, can monitor the physicochemical transformations taking place at the surface of nanoparticles. Determining the surface energy of macroscopic surfaces is trivial, but it is very challenging for nanoparticles. In this work we demonstrate that the Nanoparticles Trapped on Polymerized Pickering Emulsion Droplet (NanoTraPPED) method can be successfully deployed to monitor the evolution of surface energies γ, with its γp polar and γd dispersive components of the silica nanoparticles at each stage of two surface reactions: (i) amination by siloxane chemistry, coupling reaction of a 2,4-dihydroxy benzaldehyde and formation of a Schiff base ligand, followed by coordination of metal ions and (ii) epoxide ring opening and formation of azide. The change in surface energy and its components are discussed and analyzed for each step of the two reactions. It is observed that large variations in surface energy are observed with the complexity of the molecular structure attaching to nanoparticle surface, while functional group replacement leads to only small changes in the surface energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call