Abstract

The measurement of the rotating object is of great significance in engineering applications. In this study, a high-speed dual camera system based on 3D digital image correlation has been developed in order to monitor the rotation status of the wind turbine blades. The system allows sequential images acquired at a rate of 500 frames per second (fps). An improved Newton-Raphson algorithm has been proposed which enables detection movement including large rotation and translation in subpixel precision. The simulation experiments showed that this algorithm is robust to identify the movement if the rotation angle is less than 16 degrees between the adjacent images. The subpixel precision is equivalent to the normal NR algorithm, i.e.0.01 pixels in displacement. As a laboratory research, the high speed camera system was used to measure the movement of the wind turbine model which was driven by an electric fan. In the experiment, the image acquisition rate was set at 387 fps and the cameras were calibrated according to Zhang’s method. The blade was coated with randomly distributed speckles and 7 locations in the blade along the radial direction were selected. The displacement components of these 7 locations were measured with the proposed method. Conclusion is drawn that the proposed DIC algorithm is suitable for large rotation detection, and the high-speed dual camera system is a promising, economic method in health diagnose of wind turbine blades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call