Abstract

Slope failures possess destructive power that can cause significant damage to both life and infrastructure. Monitoring slopes prone to instabilities is therefore critical in mitigating the risk posed by their failure. The purpose of slope monitoring is to detect precursory signs of stability issues, such as changes in the rate of displacement with which a slope is deforming. This information can then be used to predict the timing or probability of an imminent failure in order to provide an early warning. Most approaches to predicting slope failures, such as the inverse velocity method, focus on predicting the timing of a potential failure. However, such approaches are deterministic and require some subjective analysis of displacement monitoring data to generate reliable timing predictions. In this study, a more objective, probabilistic-learning algorithm is proposed to detect and characterise the risk of a slope failure, based on spectral analysis of serially correlated displacement time-series data. The algorithm is applied to satellite-based interferometric synthetic radar (InSAR) displacement time-series data to retrospectively analyse the risk of the 2019 Brumadinho tailings dam collapse in Brazil. Two potential risk milestones are identified and signs of a definitive but emergent risk (27 February 2018-26 August 2018) and imminent risk of collapse of the tailings dam (27 June 2018-24 December 2018) are detected by the algorithm as the empirical points of inflection and maximum on a risk trajectory, respectively. Importantly, this precursory indication of risk of failure is detected as early as at least five months prior to the dam collapse on 25 January 2019. The results of this study demonstrate that the combination of spectral methods and second order statistical properties of InSAR displacement time-series data can reveal signs of a transition into an unstable deformation regime, and that this algorithm can provide sufficient early-warning that could help mitigate catastrophic slope failures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.