Abstract

ABSTRACT Surface differential reflectance spectroscopy (SDRS), an optical characterization technique, is sensitive enough to observe the minute changes in the surface plasmon resonance (SPR) of noble metal nanoparticles (NPs). This SPR, which causes a sharp absorption of light in the visible range, is extremely sensitive not only to the morphology and organization of the NPs, but also to the chemical atmosphere surrounding them. Hence, taking SPR as a signature phenomenon, we have studied the reactivity of Ag NPs using a dedicated in situ SDRS set-up mounted on a magnetron sputtering machine. Real-time optical characterizations were possible not only during the deposition of Ag NPs, but also during their exposure to gases such as O 2 , N 2 , Ar, either non-ionized or partially i onized. This optical study reveals that Ag NPs are reactive to non-ionized O 2 exposure, which induces modifications in the SPR characteristics (width, amplitude and position of the absorption band) in contrast to N

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.