Abstract

Light absorption in gold nanoparticles leads to metal heating that induces photothermal reshaping because of atomic surface diffusion at temperatures well below the gold melting point. In this work, we perform time-resolved experiments to measure the frequencies of the extensional coherent mechanical mode in single gold nanorods, as a monitor of the changes in their aspect ratio produced by this photoinduced reshaping. We show that photothermal reshaping always occurs in typical pump–probe experiments conducted in air even at low-excitation light irradiance and usually long measuring times. The reshaping effect can be reduced by a polymer coating, which allows faster heat dissipation from the nanoparticle to the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.