Abstract

The transient changes of the tryptophan fluorescence of bovine rhodopsin in ROS membranes were followed in time from 1 micros to 10 s after flash excitation of the photoreceptor. Up to about 100 micros the fluorescence did not change, suggesting that the tryptophan lifetimes in rhodopsin and the M(I) intermediate are similar. The fluorescence then decreases on the millisecond time scale with kinetics that match the rise of the M(II) state as measured on the same sample by the transient absorption increase at 360 nm. Both the sign and kinetics of the fluorescence change strongly suggest that it is due to an increase in energy transfer to the retinylidene chromophore caused by the increased spectral overlap in M(II). Calculation of the Forster radius of each tryptophan from the high-resolution crystal structure suggests that W265 and W126 are already completely quenched in the dark, whereas W161, W175, and W35 are located at distances from the retinal chromophore that are comparable to their Forster radii. The fluorescence from these residues is thus sensitive to an increase in energy transfer in M(II). Similar results were obtained at other temperatures and with monomeric rhodopsin in dodecyl maltoside micelles. A large light-induced transient fluorescence increase was observed with ROS membranes that were selectively labeled with Alexa594 at cysteine 316 in helix 8. Using transient absorption spectroscopy the kinetics of this structural change at the cytoplasmic surface was compared to the formation of the signaling state M(II) (360 nm) and to the kinetics of proton uptake as measured with the pH indicator dye bromocresol purple (605 nm). The fluorescence kinetics lags behind the deprotonation of the Schiff base. The proton uptake is even further delayed. These observations show that in ROS membranes (at pH 6) the sequence of events is Schiff base deprotonation, structural change, and proton uptake. From the temperature dependence of the kinetics we conclude that the Schiff base deprotonation and the transient fluorescence have comparable activation energies, whereas that of proton uptake is much smaller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.