Abstract

We monitored the acoustic emission activity of the steel blades to be used for the mirror suspension system of a gravitational wave interferometer. We have collected several sets of events getting evidence of a material memory effect (Kaiser effect) associated to the dislocation motion in the steel. This result is more evident when we apply a standard fractal analysis procedure (box counting method) to the timing series of acoustic emission bursts. We conclude that a significant reduction of the emission rate is obtained by applying a few stress cycles to the elastic blades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.