Abstract
AbstractSignificant imbalances in terrestrial water storage (TWS) and severe drought have been observed around the world as a consequence of climate changes. Improving our ability to monitor TWS and drought is critical for water‐resource management and water‐deficit estimation. We use continuous seismic ambient noise to monitor temporal evolution of near‐surface seismic velocity, dv/v, in central Oklahoma from 2013 to 2022. The derived dv/v is found to be negatively correlated with gravitational measurements and groundwater depths, showing the impact of groundwater storage on seismic velocities. The hydrological effects involving droughts and recharge of groundwater occur on a multi‐year time scale and dominate the overall derived velocity changes. The thermoelastic response to atmospheric temperature variations occurs primarily on a yearly timescale and dominates the superposed seasonal velocity changes in this study. The occurrences of droughts appear simultaneously with local peaks of dv/v, demonstrating the sensitivity of near‐surface seismic velocities to droughts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.