Abstract

Three different satellite-borne sensors, namely the Total Ozone Mapping Spectrometer (TOMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR), were used to investigate the spatial and temporal variations of aerosols over several cities in Pakistan. A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used for trajectory analysis in order to reconstruct the origins of air masses and understand the spatio-temporal variability of aerosol concentrations. Recent MODIS aerosol data (2002–2008) and earlier TOMS data (1979–2001) revealed increasing concentrations of aerosols over Pakistan and adjacent areas. Validation of MODIS and MISR derived aerosol optical depths (AODs) with Aerosol Robotic Network (AERONET) data for 2007 demonstrated that the MISR data was more accurate when close to the ocean, while the MODIS was more accurate over vegetated areas. The relationship between MODIS and MISR AOD data from 2002 to 2008 was analyzed, revealing a strong correlation between the two datasets. An assessment of seasonal variability in AOD for industrial, urban, semi-urban, rural, and semi-arid areas revealed maximum AOD values during the summer over all the areas investigated. Back trajectory analyses indicated that while winter air masses reaching Pakistan had travelled long distances, summer air masses had travelled only short distances. The higher aerosol concentrations during the summer are interpreted to be a result of the air masses spending more time over land during the summer than they do during the winter. While monsoonal rainfall tends to reduce aerosol concentrations by washing aerosols out of the atmosphere, this effect is mainly restricted to the eastern and south-eastern parts of Pakistan. ► This study carried out the spatial and temporal variations of aerosols over several cities in Pakistan. ► TOMS (1979–2001) and MODIS aerosol data (2002–2008) revealed increasing concentrations of aerosols over Pakistan. ► The spatial correlation between MODIS and MISR AOD found to be higher in winter than in summer. ► The MISR provides better AOD estimates close to the ocean while MODIS provides better over terrestrial regions. ► The highest mean AODs were recorded during the summer and the lowest AODs in the winter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call