Abstract
Climate change-driven forces and anthropogenic interventions have led to considerable changes in coastal zones and shoreline positions, resulting in coastal erosion or sedimentation. Shoreline change detection through cost-effective methods and easy-access data plays a key role in coastal management, where other effective parameters such as land-use/land-cover (LULC) change should be considered. This paper presents a remotely sensed shoreline monitoring in Sandbanks Provincial Park, Ontario, Canada, from 1984 to 2021. The CoastSat toolkit for Python and a multilayer perceptron (MLP) neural network classifier were used for shoreline detection, and an unsupervised change detection framework followed by a postclassification change detection method was implemented for LULC classification and change detection. The study assessed the recent coastal erosion and accretion trends in the region in association with spatiotemporal changes in the total area of the West and East Lakes, the transition between LULC classes, extreme climate events, population growth, and future climate projection scenarios. The results of the study illustrate that the accretion trend apparently can be seen in most parts of the study area since 1984 and is affected by several factors, including lake water-level changes, total annual precipitations, sand movements, and other hydrologic/climatic parameters. Furthermore, the observed LULC changes could be in line with climate change-driven forces and population growth to accelerate the detected accretion trend in the East and West Lakes. In total, the synergistic interaction of the investigated parameters would result in a greater accretion trend along with a lower groundwater table amid even a low carbon scenario. The discussed findings could be beneficial to regional/provincial authorities, policymakers, and environmental advocates for the sustainable development of coastal communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.