Abstract
ABSTRACTThis study examines the statistical process control chart used to detect a parameter shift with Poisson integer-valued GARCH (INGARCH) models and zero-inflated Poisson INGARCH models. INGARCH models have a conditional mean structure similar to GARCH models and are well known to be appropriate to analyzing count data that feature overdispersion. Special attention is paid in this study to conditional and general likelihood ratio-based (CLR and GLR) CUSUM charts and the score function-based CUSUM (SFCUSUM) chart. The performance of each of the proposed methods is evaluated through a simulation study, by calculating their average run length. Our findings show that the proposed methods perform adequately, and that the CLR chart outperforms the GLR chart when there is an increased shift of parameters. Moreover, the use of the SFCUSUM chart in particular is found to lead to a lower false alarm rate than the use of the CLR chart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.