Abstract
A monitoring technique for detecting changes in the root gap of butt joints during the flux-cored arc welding (FCAW) was proposed. FCAW experiments were conducted for both increasing and decreasing root gap conditions, and current and voltage were measured during the root-pass welding. The measured time series signals were used as input data for training Random Convolution Kernel Transform (ROCKET) algorithm, which consists of a feature extractor with multiple random kernels, and a linear classifier. A univariate model using current and voltage, respectively, and a multivariate model using both were compared, and the multivariate model showed the highest classification accuracy of 96.2%. Moreover, the classification errors were investigated by correlating the geometry of the root bead with the measured signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.