Abstract

This study performed root pass welding with a V-groove using a pulsed gas metal arc welding process for mild steel. Welding process parameters such as weaving, root gap size, and travel speed were major factors in the formation of the back-bead. A high-speed camera and a synchronized data acquisition system captured dynamic molten pool images and welding signals (current and voltage) simultaneously. The back-bead shape differed depending on the root gap opening. Without a root gap, the accumulated molten pool created a cushion effect in the arc center which reduced the momentum of downward flow. In contrast, the back-bead depth could be formed with a root gap opening (1 mm, 2 mm), but the back-bead shapes were different from each other at different travel speeds. The back-bead shapes also varied depending on the weaving conditions. Despite the same amount of heat input, the microstructures also varied depending on the weaving. The microstructures in the heat-affected zone with weaving were mixed with ferrite and pearlite. However, the microstructures in the heat-affected zone without weaving mainly consisted of coarse bainite. Acicular ferrite with some amount of grain boundary ferrite dominated in the weld metal in all cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.