Abstract

The investigation of nanoparticles and their interaction with bio-macromolecules have become an important issue; the widely discussed protein corona around nanoparticles and their biological fate in general have drawn particular attention. Here, we focus on nanoclay dispersions and the use of solvatochromic fluorescent dyes (Dansyl and Coumarin 153) for monitoring the interaction with two model proteins, bovine serum albumin and β-lactoglobulin. On one hand, these dyes are poorly emissive in water, but experience a boost in their fluorescence when adsorbed into the hydrophobic domains of proteins. On the other hand, (nano)clays and clay minerals have previously been investigated in terms of their individual protein adsorption isotherms and their usefulness for the solubilization of water-insoluble dyes into an aqueous environment. In the following, we have combined all three individual parts (nanoclay, fluorophore and protein) in dispersions in a wide range of concentration ratios to systematically study the various adsorption processes via fluorescence techniques. In order to clarify the extent of dye diffusion and adsorption-desorption equilibria in the investigations, nanoclay hybrids with an adsorbed dye (Coumarin 153) and a covalently conjugated dye (Dansyl) were compared. The results suggest that the fluorescence progression of protein titration curves correlate with the amount of protein adsorbed, matching their reported adsorption isotherms on hectorite clays. Furthermore, experimental data on the protein monolayer formation around the nanoclays could be extracted due to only minor alterations of the dispersions’ optical quality and transparency. In this manner, a fluorescence-based monitor for the formation of the globular protein layer around the nanoclay was realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.