Abstract

Glass fibre reinforced polymer (GRP) composites are perspective materials for manufacture of components in different machinery applications. Favourable characteristics of these materials include very high specific strength, ratio of static and dynamic stiffness, particularly beneficial in dynamically loaded structures, and potentially excellent fatigue strength provided that there are no latent internal imperfections, occurring usually in the manufacture process. Defects like insufficient wet-out of glass fibres by resin result in significant reduction of static and fatigue strength in shear. If the component thickness is high and it is loaded by bending, considerable shear stresses occur in the neutral plane, which can cause premature shear failure of the component. Results of static and fatigue tests in bending of full-scale models of longitudinal frames of railway freight vehicle bogies, manufactured from GRP polyester composites, are shown and analysed in the paper. Surface strains measured using strain gauges were monitored during the component loading, its continuous damage and were analysed. The results are in a good agreement with the subsurface strains evaluated using fibre optic sensors embedded in the component during the manufacture process. Asymmetry of strains, both internal and surface, was connected with internal defects and consequently reduced strength. On the contrary, very good fatigue resistance was characteristic for components, where strain values were symmetrical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call