Abstract

L-glutathione (GSH) which has reducibility and integrated detoxification plays an important role in maintaining normal immune system function. Its abnormal levels are relevant to some clinical diseases. In this work, a facile ratiometric fluorescence sensor for GSH was designed based on MnO2 nanosheets, Thiamine hydrochloride (VB1) and Rhodamine 6G (R6G). VB1 could be oxidized into fluorescent ox-VB1 due to the strong oxidizing property of MnO2, and MnO2 nanosheets simultaneously could quench the fluorescence of R6G based on the inner filter effect (IFE). MnO2 could react with GSH to form Mn2+, which caused its losing oxidizing property and quenching capacity. According to this principle, the concentration of ox-VB1 diminished, resulting in its fluorescence intensity decreasing at 455 nm and the fluorescence of R6G recovering at 560 nm. Under optimal conditions, the VB1-MnO2-R6G detection system showed a wide linear range towards GSH in the range of 1.0–300.0 µmolL−1 with a low detection limit reaching 0.52 µmolL−1. Furthermore, the method was also applied in the determination of GSH in human serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.