Abstract
In acute myeloid leukemia (AML), accurate detection of minimal residual disease (MRD) enables better risk-stratified therapy. There are few studies, however, on the monitoring of multiple fusion transcripts and evaluation of their accuracy as indicators of MRD at multiple time points. We retrospectively examined RNA obtained from 82 pediatric AML patients enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) AML-05 study. The expression of six important fusion transcripts (AML1(RUNX1)-ETO, CBFB-MYH11, MLL(KMT2A)-AF9, MLL-ELL, MLL-AF6, and FUS-ERG) was analyzed at five time points 30-40days apart following diagnosis. In patients with AML1-ETO (n=36 at time point 5), all six patients with >3,000 copies and four of 30 patients with ≤3,000 copies relapsed. AML1-ETO transcripts persisted during treatment even in patients without relapse, as well as CBFB-MYH11 transcripts. In contrast, in patients with MLL-AF9 (n=9 at time point 5), two patients were positive for MLL-AF9 expression (>50 copies) and both relapsed. Only one of seven MLL-AF9-negative patients relapsed. In the AML1-ETO group, MRD-positive patients (>3,000 copies at time point 5) had significantly lower relapse-free survival (RFS; P<0.0001) and overall survival (OS; P=0.009) than MRD-negative patients. Similarly, in the MLL-AF9 group, MRD-positive patients (>50 copies at time point 5) had significantly lower RFS (P=0.002) and OS (P=0.002) than MRD-negative patients. Detection of MLL-AF9 transcripts on real-time quantitative polymerase chain reaction is a promising marker of relapse in pediatric AML. In contrast, the clinical utility of detecting AML1-ETO and CBFB-MYH11 expression is limited, although higher AML1-ETO expression can be a potential predictor of relapse when assessed according to an optimal threshold.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have