Abstract

Artificial carbon dioxide leakage into a shallow aquifer was monitored using stable carbon isotope measurements at a field site near the town of Wittstock, Brandenburg, Germany. Approximately 400 000 L of CO(2) were injected into a shallow aquifer at 18 m depth over 10 days. The (13)C/ (12)C ratios of the CO(2) were measured in both groundwater and soil gas samples to monitor the distribution of the injected CO(2) plume and to evaluate the feasibility and reliability of this approach to detect potential CO(2) leakage, for example from carbon capture and storage (CCS) sites. The isotopic composition of the injected CO(2) (δ(13)C -30.5 ‰) was differentiable from the background CO(2) (δ(13)C -21.9 ‰) and the artificial CO(2) plume was monitored over a period spanning more than 204 days. The results demonstrate that this stable isotope monitoring approach can be used to identify CO(2) sources and detect potential CO(2) migration from CCS sites into overlying shallow aquifers or even into the upper subsurface. A significant difference between the isotope ratios of the natural background and the injected CO(2) is required for this monitoring approach to be effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call