Abstract
The widespread changes in forest cover caused by climatological and anthropogenic factors can influence the forest ecosystem and climate system to a great extent. With the increasing availability of remote sensing data, monitoring of forest changes at high temporal resolution and on various scales is becoming more realistic. Though several methods based on time series data have been used to detect forest disturbance, there are few studies paying attention to boreal areas where the forest is significant in regulating the global carbon cycle and biogeophysical processes. In this paper, we present a robust method of Breaks Detection Based On Polynomial Model (BDPM) to track boreal (e.g. Lesser Khingan Mountains) deforestation and forest fires based on the MODIS and Landsat TM time series data. Compared with the previous methods, the BDPM offers the following advantages: (1) Fitting of the polynomial model using the seasonal variation of forests in the whole region instead of a single pixel to avoid error accumulation; (2) to avoid confusion between vegetation change due to climate changes and abrupt forest disturbances, we segmented the long-time NDVI series data into 12 seasonal cycles and simulated the temporal variations in each seasonal cycle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have