Abstract
Abstract Aerostatic spindles are used in precision grinding applications requiring high stiffness and very low error motions (5–25 nm). Forces generated during precision grinding are small and present challenges for accurate and reliable process monitoring. These challenges are met by incorporating non-contact displacement sensors into an aerostatic spindle that are calibrated to measure grinding forces from changes in the gap between the rotor and stator. Four experiments demonstrate the results of the force-sensing approach in detecting workpiece contact, process monitoring with small depths of cut, detecting workpiece defects, and evaluating abrasive wheel wear/loading. Results indicate that force measurements are capable of providing useful feedback in precision grinding with excellent contact sensitivity, resolution, and detection of events occurring within a single revolution of the grinding wheel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.