Abstract

Gold nanoparticle labels, combined with UV-visible optical absorption spectroscopic methods, are employed to probe the temperature-dependent solution properties of DNA triple helices. By using oligonucleotide-nanoparticle conjugates to characterize triplex denaturation, for the first time triplex to duplex melting transitions may be sensitively monitored, with minimal signal interference from duplex to single strand melting, for both parallel and antiparallel triple helices. Further, the comparative sequence-dependent stability of DNA triple helices may also be examined using this approach. Specifically, triplex to duplex melting transitions for triplexes formed using oligonucleotides that incorporate 8-aminoguanine derivatives were successfully monitored and stabilization of both parallel and antiparallel triplexes following 8-aminoguanine substitutions is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.