Abstract

N-terminal acylation is a common tool for the installation of functional moieties (e.g., sensors or bioactive molecules) on collagen model peptides (CMPs). The N-acyl group and its length are generally assumed to have little or no influence on the properties of the collagen triple helix formed by the CMP. Here, we show that the length of short (C1-C4) acyl capping groups has different effects on the thermal stability of collagen triple helices in POG, OGP, and GPO frames. While the effect of different capping groups on the stability of triple helices in the GPO frame is negligible, longer acyl chains stabilize OGP triple helices but destabilize POG analogues. The observed trends arise from a combination of steric repulsion, the hydrophobic effect, and n → π* interactions. Our study provides a basis for the design of N-terminally functionalized CMPs with predictable effects on triple helix stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call