Abstract

The hole edge of a metal structure is the most likely crack position in an aircraft structure. The quantitative monitoring of a hole-edge crack is important for structural health monitoring. Therefore, this paper presented a grating thin-film sensor based on the potentiometric method. Firstly, the anodic oxidation process was used to prepare thin film on 2A12-T4 aluminum alloy matrix to prevent the aluminum alloy matrix from interfering with the monitoring signal of the sensor. Then the DC superimposed pulsed bias arc ion plating technique was used to prepare the grating thin-film sensor on the surface of the specimen. The output characteristics of the grating thin-film sensor are obtained with its finite element model, and the factors affecting the sensitivity of the sensor are analyzed. Finally, the fatigue crack monitoring tests were carried out to verify the quantitative monitoring capability of the grating thin film sensor. The experimental results show that it is feasible for the grating thin-film sensor to quantitatively monitor the fatigue crack at the hole edge of an aircraft metal structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.