Abstract
The advancement and innovations in the field of science and technology paved way for various advanced treatments in the field of medicine. They are implemented using sensors, and computer-aided designs with artificial intelligence techniques. This helps in the detection of serious health constraints at an earlier stage with appropriate treatments using decision-making techniques. One of the important health concerns that are increasing rapidly is cardiovascular disorders. This includes Arrhythmia and Myocardial Infarction. Earlier prediction and classification can protect them from serious constraints. They are diagnosed using the Electrocardiogram (ECG). To obtain accurate results, artificial intelligence techniques are implemented to extract the optimum output. The proposed system includes the detection and classification using deep learning techniques with the Internet of Things (IoT). The existing heartbeat detection system is overcome using a deep convolutional neural network. This helps in the implementation of automatic heartbeat detection and identification of abnormalities. The ECG signals are pre-processed with segmentation and feature extraction techniques. The classification and identification of constraints in the functioning of the heart are identified using optimization algorithms. The proposed system is trained, tested, and evaluated using the MIT-BIH arrhythmia database. The accuracy and efficiency of the proposed system are 99.98% using the MIT-BIH dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.