Abstract

Atrial fibrillation (AFib) is diagnosed by analysis of the morphological and rhythmic properties of the electrocardiogram. It was recently shown that accurate detection of AFib is possible using beat-to-beat interval variations. This raises the question of whether AFib detection can be performed using a pulsatile waveform such as the Photoplethysmogram (PPG). The recent explosion in use of recreational and professional ambulatory wrist-based pulse monitoring devices means that an accurate pulse-based AFib screening algorithm would enable large scale screening for silent or undiagnosed AFib, a significant risk factor for multiple diseases. We propose a noise-resistant machine learning approach to detecting AFib from noisy ambulatory PPG recorded from the wrist using a modern research watch-based wearable device (the Samsung Simband). Ambulatory pulsatile and movement data were recorded from 46 subjects, 15 with AFib and 31 non symptomatic. Single channel electrocardiogram (ECG), multi-wavelength PPG and tri-axial accelerometry were recorded simultaneously at 128 Hz from the non-dominant wrist using the Simband. Recording lengths varied from 3.5 to 8.5 minutes. Pulse (beat) detection was performed on the PPG waveforms, and eleven features were extracted based on beat-to-beat variability and waveform signal quality. Using 10-fold cross validation, an accuracy of 95 % on out-of-sample data was achieved, with a sensitivity of 97%, specificity of 94%, and an area under the receiver operating curve (AUROC) of 0.99. The described approach provides a noise-resistant, accurate screening tool for AFib from PPG sensors located in an ambulatory wrist watch. To our knowledge this is the first study to demonstrate an algorithm with a high enough accuracy to be used in general population studies that does not require an ambulatory Holter electrocardiographic monitor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.