Abstract
Investigation of temperature extremes is very important as one of the most important climate parameters in different parts. If exposed to enough heat, humans will suffer from extreme heat. Maximum temperature and heat can adversely affect many living organisms. The effects of extreme heat on people with chronic lung disease, including asthma and emphysema, are greater; even for people with healthy lungs, outdoor activities are not recommended during high ozone levels. The purpose of this study is to monitor and analyze the effects of atmospheric temperature extreme and extreme heat on human health in Central Iran. Therefore, the minimum and maximum data of 15 synoptic stations in the study area for the period (1988–2018) using hybrid artificial neural network (HANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used. Finally, multi-criteria decision-making (MCDM) models TOSIS and SAW were used to prioritize the areas exposed to rising temperature. The results showed that according to ANFIS modelling for predicting extreme temperatures, the lowest mean training error and the mean error of validation for the minimum temperature were equal to 0.10 for the Yazd Station and 1.66% for the Damghan station. The lowest mean training error and the mean error of validation for the maximum extreme temperature obtained 0.016 for the Garmsar station and 9.39% for the Shahroud station. The maximum extreme temperature of two stations of Garmsar and Bafgh (1 and 0.9689, respectively) was more exposed to extreme temperatures based on the TOPSIS model. Garmsar and Salafchegan Stations (1 and 0.9873, respectively) were more exposed to extreme temperatures based on the SAW model. Climate change is fundamentally changing the Earth’s climate system in a way that directly and indirectly endangers human physical and mental health. Severe increase in temperature is directly associated with death from cardiovascular and respiratory diseases, especially in the elderly. Also in the study area, the house is a place for peace and comfort for every human being. Climatic and weather conditions have a direct impact on creating a sense of comfort in any architectural space. Proper heating and air conditioning in the interior of the building is another case of architecture that will not be easy because this architectural issue is related to the comfort or non-comfort of man, and the concepts of heat or cold are mostly due to the natural feeling of man and his physiological conditions. The rising trend of thermal stresses in the studied stations increases the need to pay attention to the issue of thermal stresses and the spread of diseases (heat attack, syncope, and muscle cramps) in terms of crisis planning and management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have