Abstract

A path planning framework for regional surveillance of a planar advection-diffusion process by aerial mobile sensors is proposed. The goal of the path planning is to produce feasible and collision-free trajectories for a set of aerial mobile sensors that minimize some uncertainty measure of the process under observation. The problem is formulated as a dynamic optimization problem and discretized into a large-scale nonlinear programming (NLP) problem using the Petrov–Galerkin finite element method in space and simultaneous collocation in time. Receding horizon optimization problems are solved in simulations with an advection-dominated ice concentration field. Simulations illustrate the usefulness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.