Abstract
In this paper, we show that symplectic partitioned Runge-Kutta methods conserve momentum maps corresponding to linear symmetry groups acting on the phase space of Hamiltonian differential equations by extended point transformation. We also generalize this result to constrained systems and show how this conservation property relates to the symplectic integration of Lie-Poisson systems on certain submanifolds of the general matrix group GL( n).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.