Abstract
The influence of periodic excitation from synthetic jet actuators on boundary-layer separation and reattachment over a NACA 0025 airfoil at a low Reynolds number is studied. Flow-visualization results showed a vertical jet pulse accompanied by two counter-rotating vortices being produced at the exit of the simulated slot, with the vortices shed at the excitation frequency. Hot-wire measurements determined the maximum jet velocity for a range of excitation frequencies and voltages, and were used to characterize the excitation amplitude in terms of the momentum coefficient Cμ. With the synthetic jet actuator installed in the airfoil, flow-visualization results showed that excitation produces boundary-layer reattachment, with the associated significant reduction in wake width. Wake-velocity measurements were performed to characterize the effect of flow-control excitation amplitude and frequency on airfoil drag and wake topology. The results demonstrate that Cμ is the primary governing flow-control parameter....
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have