Abstract
We propose a novel semi-nonparametric distribution that is feasibly parameterized to represent the non-Gaussianities of the asset return distributions. Our Moments Expansion (ME) density presents gains in simplicity attributable to its innovative polynomials, which are defined by the difference between the nth power of the random variable and the nth moment of the density used as the basis. We show that the Gram–Charlier distribution is a particular case of the ME-type of densities. The latter being more tractable and easier to implement when quadratic transformations are used to ensure positiveness. In an empirical application to asset returns, the ME model outperforms both standard and non-Gaussian GARCH models along several risk forecasting dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The North American Journal of Economics and Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.