Abstract

This paper deals with Poisson processes on an arbitrary measurable space. Using a direct approach, we derive formulae for moments and cumulants of a vector of multiple Wiener-Itô integrals with respect to the compensated Poisson process. Also, we present a multivariate central limit theorem for a vector whose components admit a finite chaos expansion of the type of a PoissonU-statistic. The approach is based on recent results of Peccatiet al.(2010), combining Malliavin calculus and Stein's method; it also yields Berry-Esseen-type bounds. As applications, we discuss moment formulae and central limit theorems for general geometric functionals of intersection processes associated with a stationary Poisson process ofk-dimensional flats in.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.