Abstract

A Poisson or a binomial process on an abstract state space and a symmetric function $f$ acting on $k$-tuples of its points are considered. They induce a point process on the target space of $f$. The main result is a functional limit theorem which provides an upper bound for an optimal transportation distance between the image process and a Poisson process on the target space. The technical background are a version of Stein's method for Poisson process approximation, a Glauber dynamics representation for the Poisson process and the Malliavin formalism. As applications of the main result, error bounds for approximations of U-statistics by Poisson, compound Poisson and stable random variables are derived, and examples from stochastic geometry are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call