Abstract
The eigenvalues of matrices representing the structure of large-scale complex networks present a wide range of applications, from the analysis of dynamical processes taking place in the network to spectral techniques aiming to rank the importance of nodes in the network. A common approach to study the relationship between the structure of a network and its eigenvalues is to use synthetic random networks in which structural properties of interest, such as degree distributions, are prescribed. Although very common, synthetic models present two major flaws: 1) These models are only suitable to study a very limited range of structural properties; and 2) they implicitly induce structural properties that are not directly controlled and can deceivingly influence the network eigenvalue spectrum. In this paper, we propose an alternative approach to overcome these limitations. Our approach is not based on synthetic models. Instead, we use algebraic graph theory and convex optimization to study how structural properties influence the spectrum of eigenvalues of the network. Using our approach, we can compute, with low computational overhead, global spectral properties of a network from its local structural properties. We illustrate our approach by studying how structural properties of online social networks influence their eigenvalue spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.