Abstract
The moment-rotation behavior of force-based frame elements is expressed as a function of plastic hinge length and moment-curvature parameters for two types of plastic hinge integration under the representative loading condition of antisymmetric bending. For modified Gauss-Radau hinge integration, there is a unique relationship between the resulting moment-rotation hardening ratio and parameters defining the plastic hinge length and moment-curvature hardening ratio. For two-point Gauss-Radau hinge integration, the spread of yielding across the hinge regions leads to a multilinear moment-rotation response, for which a secant approximation of the hardening stiffness is directed to a target plastic rotation. An example application demonstrates that significantly unconservative assessments of lateral load-carrying capacity can be attained if modeling parameters for plastic hinge length and moment-curvature strain hardening are not calibrated to account for the discrepancy between moment-curvature and moment-rotation behavior of an element.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have