Abstract

We survey a number of moment hierarchies and test their performances in computing one-dimensional shock structures. It is found that for high Mach numbers, the moment hierarchies are either computationally expensive or hard to converge, making these methods questionable for the simulation of highly nonequilibrium flows. By examining the convergence issue of Grad's moment methods, we propose a new moment hierarchy to bridge the hydrodynamic models and the kinetic equation, allowing nonlinear moment methods to be used as a numerical tool to discretize the velocity space for high-speed flows. For the case of one-dimensional velocity, the method is formulated for odd number of moments, and it can be extended seamlessly to the three-dimensional case. Numerical tests show that the method is capable of predicting shock structures with high Mach numbers accurately, and the results converge to the solution of the Boltzmann equation as the number of moments increases. Some applications beyond the shock structure problem are also considered, indicating that the proposed method is suitable for computation of transitional flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.