Abstract

We study the corrector equation in stochastic homogenization for a simplified Bernoulli percolation model on $\mathbb{Z}^d$, $d > 2$. The model is obtained from the classical $\{0,1\}$-Bernoulli bond percolation by conditioning all bonds parallel to the first coordinate direction to be open. As a main result we prove (in fact for a slightly more general model) that stationary correctors exist and that all finite moments of the corrector are bounded. This extends a previous result of Gloria & Otto, where uniformly elliptic conductances are treated, to the degenerate case. With regard to the associated random conductance model, we obtain as a side result that the corrector not only grows subinearly, but slower than any polynomial rate. Our argument combines a quantification of ergodicity by means of a Spectral Gap on Glauber dynamics with regularity estimates on the gradient of the elliptic Green's function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.