Abstract
A general method of tail index estimation for heavy-tailed time series, based on examining the growth rate of the logged sample second moment of the data was proposed and studied in Meerschaert and Scheffler (1998. A simple robust estimator for the thickness of heavy tails. J. Statist. Plann. Inference 71, 19–34) as well as Politis (2002. A new approach on estimation of the tail index. C. R. Acad. Sci. Paris, Ser. I 335, 279–282). To improve upon the basic estimator, we introduce a scale-invariant estimator that is computed over subsets of the whole data set. We show that the new estimator, under some stronger conditions on the data, has a polynomial rate of consistency for the tail index. Empirical studies explore how the new method compares with the Hill, Pickands, and DEdH estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.