Abstract
Acid mine wastewater from mining industries leads to serious environmental problems due to its acidic nature and high levels of hazardous heavy metal ions. Thus, it is important to develop novel adsorbent materials for selective removing heavy metal ions. In this work, an amorphous molybdenum sulphide functionalized dipicolyamine exchanger were prepared and ultilised to scavenge toxic heavy metal ions from both synthetic and real acid mine waste water (copper mining industry). This new exchanger combines the advantages of exceptional heavy metal affinities from molybdenum sulphide and engineered macroporous structure from dipicolylamine resin. The results of batch and fixed-bed column tests suggest high selectivity towards heavy metals, fast adsorption kinetics, good reusability and excellent adsorption capacities in the sequence of Hg(II)≫Cd(II) > Cu(II). The metal adsorption mechanism has been demonstrated by X-ray Photoelectron Spectroscopy (XPS). Our findings support the potential practical application of this new material for scavenging heavy metal ions in mining wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.