Abstract

Molybdenum (Mo) systematics (i.e., total concentration and isotope ratios) are widely used for the reconstruction of paleo-redox conditions in sedimentary records. However, the geochemical processes affecting the distribution of Mo in carbonaceous fine-grained sedimentary rocks remain unclear. This study investigates how the organic matter type may control Mo concentration and speciation in siltstone/shale strata of the Lower Triassic Montney Formation in the Western Canadian Sedimentary Basin (WCSB) to identify the effects of hydrocarbon expulsion and migration, fluid/rock interactions, and thermal maturity on Mo geochemistry when used as a paleo-redox proxy.The bulk Mo concentration in the studied samples varies from 0.2 to 86 ppm (mean = 13 ± 16.7 ppm), with Mo enrichment factors of 22.7 ± 24.4 suggesting an anoxic paleo-depositional setting. The X-ray Absorption Near Edge Spectroscopy (XANES) results show the presence of two separate Mo species within distinct geographic locations: (1) a group with a higher average Mo oxidation state where Mo is mostly surrounded by oxygen (O) atoms in an octahedral configuration, and (2) a group showing a lower average Mo oxidation state where Mo is mostly surrounded by sulfur (S) atoms in a tetrahedral configuration.The reduced Mo species are distributed in the vicinity of fault-related hydrothermal diagenesis/dolomitization zones. In contrast, the oxidized Mo species are found associated with samples enriched with solid bitumen/pyrobitumen. The results of our study show Mo speciation can significantly help to elucidate complex paleo-redox histories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.