Abstract
Physisorption of hydrogen in microporous molybdenum carbide (Mo 2C)-derived carbons has been studied as a function of synthesis conditions. Changes in local structure induced by varying the chlorination temperature afford controllable variations in average pore size and specific surface area. Optimal hydrogen storage capacity of 4.3 wt%, measured at −196 °C and 35 bar pressure, is obtained from a sample chlorinated at 660 °C for 3 h. This optimum correlates with the largest fraction of total pore volume having average pore sizes in the 0.6–0.8 nm range.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have