Abstract

The need for clean, renewable energy has driven the expansion of renewable energy generators, such as wind and solar. However, to achieve a robust and responsive electrical grid based on such inherently intermittent renewable energy sources, grid-scale energy storage is essential. The unmet need for this critical component has motivated extensive grid-scale battery research, especially exploring chemistries “beyond Li-ion”. Among others, molten sodium (Na) batteries, which date back to the 1960s with Na-S, have seen a strong revival, owing mostly to raw material abundance and the excellent electrochemical properties of Na metal. Recently, many groups have demonstrated important advances in battery chemistries, electrolytes, and interfaces to lower material and operating costs, enhance cyclability, and understand key mechanisms that drive failure in molten Na batteries. For widespread implementation of molten Na batteries, though, further optimization, cost reduction, and mechanistic insight is necessary. In this light, this work provides a brief history of mature molten Na technologies, a comprehensive review of recent progress, and explores possibilities for future advancements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call