Abstract
The construction of carbon-encapsulated transition metal nanotube structures is a preferred method that can effectively slow down volume expansion, improve cycling stability and enhance the electrical conductivity of the reactive sites of lithium-ion batteries. In this study, nanotubes of carbon-coated NiCo-NiCo2O4 nanoparticles (NC-NCO@C) were prepared by a one-step molten salt method at high temperature using Ni and Co as catalytic centers and sodium acetate as carbon source. We used NC-NCO@C-2 nanotubes as anode materials for lithium-ion batteries(LIBs), which exhibited excellent lithium storage performance and good stability, with a specific capacity of 616.26 mAh g−1 after 1000 cycles at a high current density of 1 A g−1. In addition, NC-NCO@C-2 were used as anodes in lithium-ion full cells and LiFePO4 (LFP) was used as the cathode. The NC-NCO@C-2//LFP full-cell exhibits high capacity and good cycling stability, with a capacity of 100.7 mAh g−1 after 100 cycles and a capacity retention rate of 92%. The construction of NC, NCO, and carbon ternary complexes was found to activate and promote the reversible conversion of certain inorganic components at the solid electrolyte interfaces (SEI), which effectively reduced the volume change during cycling, increased the electrical conductivity, and improved the cycling stability of the electrode. The proposed one-step molten salt synthesis of Carbon-coated metals complexes with excellent compatibility characteristics, is expected to solve the problem of volume change in transition metals, which is encountered in LIBs applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.