Abstract

Today, the prediction of structures of large protein complexes solely from their sequence information requires prior knowledge of the stoichiometry of the complex. To address this challenge, we have enhanced the Monte Carlo Tree Search algorithms in MoLPC to enable the assembly of protein complexes while simultaneously predicting their stoichiometry. In MoLPC2, we have improved the predictions by allowing sampling alternative AlphaFold predictions. Using MoLPC2, we accurately predicted the structures of 50 out of 175 nonredundant protein complexes (TM-score ≥ 0.8) without knowing the stoichiometry. MoLPC2 provides new opportunities for predicting protein complex structures without stoichiometry information. MoLPC2 is freely available at https://github.com/hychim/molpc2. A notebook is also available from the repository for easy use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.