Abstract

The applications of any ultrathin semiconductor device are inseparable from high-quality metal-semiconductor contacts with designed Schottky barriers. Building van der Waals (vdWs) contacts of 2D semiconductors represents an advanced strategy of lowering the Schottky barrier height by reducing interface states, but will finally fail at the theoretical minimum barrier due to the inevitable energy difference between the semiconductor electron affinity and the metal work function. Here, an effective molecule optimization strategy is reported to upgrade the general vdWs contacts, achieving near-zero Schottky barriers and creating high-performance electronic devices. The molecule treatment can induce the defect healing effect in p-type semiconductors and further enhance the hole density, leading to an effectively thinned Schottky barrier width and improved carrier interface transmission efficiency. With an ultrathin Schottky barrier width of ≈2.17nm and outstanding contact resistance of ≈9 kΩµm in the optimized Au/WSe2 contacts, an ultrahigh field-effect mobility of ≈148cm2 V-1 s-1 in chemical vapor deposition grown WSe2 flakes is achieved. Unlike conventional chemical treatments, this molecule upgradation strategy leaves no residue and displays a high-temperature stability at >200 °C. Furthermore, the Schottky barrier optimization is generalized to other metal-semiconductor contacts, including 1T-PtSe2 /WSe2 , 1T'-MoTe2 /WSe2 , 2H-NbS2 /WSe2 , and Au/PdSe2 , defining a simple, universal, and scalable method to minimize contact resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.