Abstract

A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted polymers were synthesized by the combined use of ally-β-cyclodextrin (ally-β-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.