Abstract

Field selective extraction is crucial for accurate monitoring of triazine herbicides (TAHs) in aqueous samples. For this purpose, using atrazine as template and 3-acrylamido phenylboronic acid as functional monomer which was quickly screened with calculation simulation technology, a new molecularly imprinted monolith-based adsorbent (MBA) was fabricated and utilized as the extraction phase of laboratory-made multichannel in-tip microextraction device (MIMD). A series of techniques were adopted to characterize the physical and chemical properties of the synthesized MBA. Under the optimized preparation conditions, the recognition factor and capture capacity of MBA towards atrazine were as high as 2.9 and 23.4 mg/g, respectively, and the enrichment factors towards TAHs located in the range of 276–359. The study about adsorption isotherm evidenced the adsorption of MBA towards atrazine was fit for Freundlich adsorption model. Under the beneficial extraction parameters, the introduced MBA/MIMD was utilized to on-site extract TAHs in a variety of aqueous samples prior to HPLC determination. High sensitivity (limit of detection: 0.25–0.64 ng/L), good precision (relative standard deviation: 1.4–9.5%) and satisfying recovery (81.0–113%) were achieved. Accuracy and reliability of the introduced method were inspected through confirmation experiments. Owing to the good results and outstanding merits, the established MBA/MIMD technique is appropriate for field sample preparation of TAHs and the developed method can be utilized to monitor TAHs residuals in various aqueous samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.