Abstract

Poor selectivity and reusability of Au/Ag nanostructures are the main challenges for surface-enhanced Raman spectroscopy (SERS) in real sample detection. Herein, a novel specific and reusable three-dimensional (3D) SERS sensor with dual functions of selective trapping and photocatalytic degradation was designed. Firstly, Au-Ag bimetallic nanoparticles decorated silicon nanowires array (SiNWs-AuAg) wereprepared as 3D SERS substrate. Then,silicon-based inorganic-framework molecularly imprinted TiO2 (TiO2@SiMIP) was synthesized and immobilized on SiNWs-AuAg by using rhodamine 6G (R6G) as template molecule. Owing to the excellent SERS performance of SiNWs-AuAg and the specific affinity of TiO2@SiMIP to template molecule, the prepared SERS sensor enables sensitive and selective detection of R6G in food samples with a limit of detection (LOD) of 0.27 nM. In addition, due to the photocatalysis of TiO2 and the stability of silicon-based inorganic framework, the residual templates in TiO2@SiMIP can be completely removed by UV irradiation, and the imprinted cavity of regenerated sensors still maintained good selectivity after regeneration by UV irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.