Abstract

In this study, magnetic activated carbon (MAC) nanoparticles were coated with an organic hybrid of silicotungstic acid that makes MAC suitable for adsorption and photocatalytic degradation of dyes. The prepared composite was characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermal analyses, scanning electron microscopy, vibrating sample magnetometer, and N2 adsorption-desorption isotherms. Dye adsorption and photocatalytic properties of composite were examined by studying the decolorization of model dyes methylene blue (MB), methyl orange (MO), rhodamine B (RhB), and their mixture solutions. The results show that the composite can selectively adsorb MB molecules from binary mixtures of MB/MO or MB/RhB, and its adsorption capacity is enhanced as compared with the MAC. The composite is also, unlike MAC, a good photocatalyst in the degradation of dyes under sunlight, visible, and UV irradiation and can be separated by magnet, recovered and reused. Removal is via combination of adsorption and then photocatalytic degradation through direct oxidation by composite or indirect oxidation by •OH radicals. While the sunlight is not able to degrade alone MO and RhB solution in the presence of composite, it degrades the MO and RhB mixed with MB solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.