Abstract

The high defect density and inferior crystallinity remain great hurdles for developing highly efficient and stable Sn-based perovskite solar cells (PSCs). 2D/3D heterostructures show strong potential to overcome these bottlenecks; however, a limited diversity of organic spacers has hindered further improvement. Herein, a novel alicyclic organic spacer, morpholinium iodide (MPI), is reported for developing structurally stabilized 2D/3D perovskite. Introducing a secondary ammonium and ether group to alicyclic spacers in 2D perovskite enhances its rigidity, which leads to increased hydrogen bonding and intermolecular interaction within 2D perovskite. These strengthened interactions facilitate the formation of highly oriented 2D/3D perovskite with low structural disorder, which leads to effective passivation of Sn and I defects. Consequently, the MP-based PSCs achieved a power conversion efficiency (PCE) of 12.04% with superior operational and oxidative stability. This work presents new insight into the design of organic spacers for highly efficient and stable Sn-based PSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.