Abstract

A novel technique based on in situ steady state fluorescence measurements is introduced for studying swelling processes of gels formed by free radical crosslinking copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDM) in homopolymer solutions. Gels were prepared at 55±2 °C for various EGDM contents. After drying these gels, swelling experiments were performed in chloroform solution of anthracene labeled poly(methyl methacrylate) (An-PMMA) in various molecular weights at room temperature by real time monitoring of anthracene fluorescence intensity. Anthracene labeled PMMA chains having various molecular weights were prepared by atom transfer radical polymerization at 90 °C. During the swelling experiments, it was observed that anthracene emission intensities increased due to trapping of An-PMMA chains into the gel as the swelling time is increased. The trapping of An-PMMA chains in swollen gel, increase by obeying parabolic law in time. Penetration time constant, τ of PMMA chains were measured and found to be increased as the crosslinker density of gel is increased. It is observed that τ values are much higher for high molecular weight An-PMMA chains than low molecular weight chains in all gel samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call